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Variations from the Plateau law in foams
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In this paper we study microgeometry of real foam. We suggest an explanation of systematic varia-
tions from the classical Plateau law which may be observed in real froths and foams of random structure.
We show that the variations in the inclination angles between liquid films forming Plateau borders are
conditioned by the variations in disjoining pressure and surface tension in the films separating bubbles of
different sizes. Equations for calculating the inclination angles from the isotherm of disjoining pressure
are derived. For black foam films the deviations of the inclination angles from the ideal value of 120° are

expected to amount up to several degrees.
PACS number(s): 82.70.Rr, 68.10.—m, 68.90.+g

Real foams and froths are random coarse dispersions
of gas bubbles separated by thin liquid films; for reviews
see [1-6]. Many important problems connected with
formation, stability, and rheology of foams require
thorough analysis of microgeometry of bubbles and liquid
films. The microgeometry of ideal equilibrium foam has
been studied in detail by Josef-Antoine-Ferdinand Pla-
teau over the course of a quarter century (1843-1869);
for a modern description see [7].

The Plateau law can be formulated as follows. In
three-dimensional (3D) equilibrium foam, the liquid films
between coarsened bubbles constitute a polyhedral struc-
ture with two main geometrical features: (i) the edges,
named Plateau borders, are formed by three liquid films
equally inclined toward one another all along the edge,
with mutual angles equal to 120°% (ii) the vertices are
formed by four liquid films with the edges equally in-
clined toward one another in space at the Maraldi
(tetrahedral) angle =~109°28''16’, whose cos is equal to
— <. In two dimensions, liquid films in equilibrium con-
stitute a polygonal network with vertices formed by three
edges meeting at 120°.

The Plateau law is one of the most prominent physical
laws in the natural sciences due to its simplicity and wide
applicability to many cellular structures other than
foams, such as biological tissues, polycrystals, and mag-
netic systems [1-6]. It is based on the clear supposition
of local mechanical equilibrium with the only assumption
that the surface tension of all interfaces is the same. The
validity of the Plateau law has been reported for many
various experimental systems [1-6]. Recently, Stavans
and Glazier [8] have claimed that even in two-
dimensional (2D) froth the angles between the liquid
edges do not always meet at 120° angles. These depar-
tures from Plateau’s law have been reported for a random
froth structure with a significant distribution of bubble
sizes. The authors [8] have found that the average inter-
nal angle in small bubbles having a number of sides less
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than 6 is smaller than 120°, and in big bubbles having a
number of sides more than 6 it is larger than 120°. More-
over, similar deviations from the Plateau law have been
observed by Stine et al. [9] in cellular patterns formed in
lipid (PDA) monolayers on a water surface.

To the best of our knowledge the only attempt to ex-
plain the observed deviations from the Plateau law [8]
has been made by Bolton and Weaire [10]. They ad-
dressed the deviations in inclination angles between
liquid films from 120° to the particular procedure of
measuring these angles used in [8], which leads in the
case of thick Plateau borders to an apparent increase of
the inclination angles in large bubbles and to an apparent
decrease of the inclination angles in small bubbles. Bol-
ton and Weaire have shown that the Plateau law should
be valid even in the case of thick Plateau borders provid-
ed that the angles are measured between the extensions of
curved bubble edges meeting at a point at the center of
the border. It is worth noting that afterwards the au-
thors of [8] agreed with the arguments of Bolton and
Weaire [6,11] and in recent experiments with dry foam
[11] deviations from the Plateau law have not been ob-
served. After the appearance of these papers, discussion
on possible violations of the Plateau law was implicitly
closed.

In this paper we are revisiting this problem. The major
purpose is to theoretically predict the inevitable devia-
tions from the Plateau law in any random foam made of
unequal bubbles. The range of these deviations depends
on the film’s nature and on the conditions of mechanical
equilibrium. These deviations may be negligibly small or
sufficiently large depending on the foaming and antifoam-
ing agents employed in foam preparation. The largest de-
viations are expected in a foam where different films
coexist: thick films, common black films, and Newton
black films. The coexistence of different films is typical
for soap foams and the corresponding observations date
back to Isaac Newton (1704).

Recent special experiments with dry 2D foam [12]
prepared by nitrogen injection in an octaethylene glycol
monodecyl ether (OGME) solution (concentration ¢ =0.1
mol/m?) give strong evidence of essential deviations from
120°. A typical example is presented in Fig. 1. The devi-
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FIG. 1. A pattern of dry 2D foam of a OGME solution. Pos-
itive deviations in the inclination angles in large bubbles and
negative deviations in small bubbles are easily seen.

ations from the conventional value of 120° are easily seen
and may hardly be regarded as experimental errors. Al-
though the angles could not be calculated exactly because
of the insufficient quality of the obtained pictures, we be-
lieve that this is clearly a violation of the Plateau law.
We are aware of the pitfalls facing the authors [8] in the
case of wet foam, and the method of Bolton and Weaire
[10] is unable to explain the deviations from 120° in the
pattern of dry 2D foam presented in Fig. 1. One of us
(M. V.-A)) is currently taking precise measurements,
which is planned to be communicated elsewhere. We are
not now in a position to discuss in detail the experimental
data presented in Fig. 1, but these experiments have
stimulated us to develop a theory presented below that
explains the possible violations of the Plateau law in real
films.

The problem—whether the deviations from the Pla-
teau law are typical for all random froths and foams or
whether the above-mentioned data are the exceptions
confirming a general rule—is of great practical value in
connection with the repeated attempts to produce ade-
quate structure models for real cellular systems [13-15].
The fulfillment of the Plateau law is one of the main regu-
lar requirements for the theoretical and computer models
of foams and other cellular systems of random structure.
Conventional laws of foam evolution such as the famous
von Neumann law [16] for two-dimensional froth are
based on the Plateau law. When the deviations from the
Plateau law are essential, these models of foam micro-
geometry and the dynamic laws based on them require
modifications [8,10,17].

It is worth noticing that the Plateau law as well as the
Bolton and Weaire theory imply the equality of surface
tension for all liquid films independent of their curvature
and of bubble sizes, and therefore may be considered for
thick films only. Experimentally, thick films are usually
thermodynamically unstable unless the Gibbs-Marangoni
effect is acting and they turn spontaneously into thin
black films [18]. The extensive experimental and theoret-
ical studies of black films have been carried out in the
1960s [19-22]; for a review of numerous papers of
researchers see [3]. Two modifications of black films are
well known, the so-called common and Newton black
films. They differ in thickness and in thermodynamic
properties, in particular in surface tension. The
difference in surface tension causes a nonzero contact an-
gle between a thin film and a bulk liquid that has been ob-

served in a number of experiments, in particular with
foam films (for an extended review, see, e.g., [3], and
references therein). The contact angles observed in these
experiments amount up to 10° and even more [23,24],
which corresponds to a surface tension difference of
about 1 mN/m [23]. In real foam with films of different
thickness and curvature, similar effects may cause the de-
viations in the inclination angles from the equilibrium
value of 120°, as required by the Plateau law. To our
knowledge, experimental evidence of these effects in real
3D foam is lacking.

Any foam is a nonequilibrium thermodynamic system
that evolves in time. This process is mostly conditioned
by gas diffusion from the smaller bubbles to the bigger
ones due to the pressure difference between the bubbles.
Despite these inevitable changes, the instantaneous foam
configuration may be regarded as an equilibrium
configuration in a current field of pressure since the
characteristic time of the establishment of local mechani-
cal equilibrium between the bubbles and films is much
smaller than the characteristic time of pressure changes
due to mass transfer. This has led us, together with other
researchers [1-6], to believe that these processes can be
separated in time while modeling the microgeometry of
foam. By microgeometry we mean the local
configuration of contacting bubbles and films. With this
hypothesis in mind we suppose that the foam micro-
geometry is determined by the current pressure in the
bubbles P; (i is the number of the bubble) and by the
external pressure P, (actually, P, is the pressure in the
bulk liquid in thermodynamic equilibrium with the film
liquid). Isothermal conditions and the inefficiency of
gravity on the scale of 1-2 bubbles are supposed also.

First, let use consider a liquid film between two bubbles
of different size (Fig. 2). This problem was studied in de-
tail earlier by Churaev and Starov [25] by taking into ac-
count the transition zone between the interlayer and the
bulk liquid. To analyze the equilibrium configuration in
this system, we apply the Derjaguin equation [26] for the
equilibrium of thin liquid films on curved solid surfaces:

P,+20/R.=T(h)+P, , (1)
where P, is the gas pressure, o is the surface tension on

the liquid-gas interface, R, is the mean radius of curva-
ture of the liquid-gas interface supposed equal to the
mean radius of curvature of the solid substrate provided
film thickness 4 is much less than R, II(4) is the disjoin-
ing pressure in the liquid film of thickness A, and P, is the
external pressure in bulk liquid that is in equilibrium with
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FIG. 2. Thin film bubbles two bubbles i and j with different
pressures P; <P;.
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the film. The Derjaguin equation implies that the contri-
butions of capillary and surface forces are additive and
that the latter do not depend on the film curvature.

Application of the Derjaguin equation (1) to the liquid
film between the bubbles is based on the fact that the
equilibrium configuration of the film does not change
when one of the bubbles would be replaced (mentally) by
a solid of the same form. This procedure applied to the
bubble leads to the equilibrium equation for the interface
between liquid film and bubble i,

P,+20'/R,]:H(hu)+P0 N (2a)

where h;; is the film thickness and R; is the mean radius
of curvature of this interface. It is assumed that P; <P;.
For the interface between the liquid film and the bubble j,

the symmetric equation holds,
P;—20/R;=1l(h;)+P, . (2b)

The thickness of real foam films is considerably less than
their radius of curvature; h;; <<R; and therefore the
values R;; and R; in Egs. (2a) and (2b) can be regarded as
being equal.

From Eqgs. (2a) and (2b) it follows that (i) the mean ra-
dius of film curvature is calculated from the ordinary La-
place equation for a thick film between two phases,

and (ii) the film thickness is calculated from the isotherm
of disjoining pressure II(4),

I(h;)=(AP;+AP;)/2=P; . 4)

Here, AP, =(P; —P,) is the capillary overpressure in bub-
ble i. It is worth noting that Eq. (4) is in fact a particular
case of a general equation [27],

(h;)=(0;AP;+0,;AP;)/(0;+0;), (5
valid for the disjoining pressure in a curved film between
two phases with the different surface tension on the inter-
face with the liquid film. In the present case, 0, =0 ;=0,
and Eq. (5) is turned into Eq. (4).

Equation (4) states that the disjoining pressure and
thickness of a liquid film between two bubbles are the
same as those of a liquid film pressed onto an inert solid
substrate with the pressure I_’,»j equal to the arithmetical
average pressure in the bubbles. Equation (4) makes it
possible to predict the film thickness provided that the
isotherm of disjoining pressure is known.

In foam films the isotherms of disjoining pressure are
governed by an interplay between dispersion and electro-
static forces. They may have a rather complicated shape
with the negative and positive regions, maxima and mini-
ma [3,18]. A typical sketch of the disjoining pressure iso-
therm for a soap film is presented in Fig. 3. Nonmono-
tonic behavior of the isotherm causes the existence of
several metastable states with the same disjoining pres-
sure, i.e., with the same chemical potential, e.g., common
and Newton black films.

The surface tension of a film may depend on its thick-
ness and curvature [26]. For real foam films, the latter
factor is hardly essential but the former should be con-
sidered while analyzing the foam microgeometry. The
surface tension of thin liquid film is calculated from the
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FIG. 3. Schematic sketch of typical isotherm of disjoining
pressure II(A) in soap films 1, region of Newton black films; 2,
region of common black films.

isotherm of disjoining pressure [3,18,26,28]:
0
oh=20+ [“Mdh+N(Wh=20— [ hdll.  (6)
h Ti(h)

For thick films, A—c and II(h)—0; Eq. (6) gives the
trivial relation for a thick film,

0,=20 . (7

The difference between the surface tension of a thin film
and of a thick film,

0
Ao(h)= [ “Mah+Thh=—[ ddIl, (8)

may amount for soap films to several percent [26], which
yields a perceptible nonzero contact angle between thin
films and bulk liquid.

Recall that the Plateau law for the inclination angles
between contacting foam films is based on the supposition
that the surface tension of all films is equal to o, (7).
The deviations in surface tension conditioned by the
difference in disjoining pressure due to Eq. (8) should lead
to the deviations in inclination angles from the ideal
value of 120°.

Figure 4 presents a sketch of a normal cross section of
a Plateau border formed by three bubbles with different
pressure P; = P; > P;. The disjoining pressure in the films
between bubbles is determined by Eq. (4) and the surface
tension is determined by Eq. (6):

FIG. 4. Normal cross section of a Plateau border formed by
three bubbles i, j, and k with different pressures P; = P; = Py (a;,
a;, and ai: the inclination angles; o;;, 0 4, and o the surface
tension of liquid films).
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0
0,j=20—fmh)h dll=o,+A0; . 9)

Denote as «; the inclination angle between the films
coarsening the bubble i. Then, the usual conditions of
mechanical equilibrium are written as

0, =0 cos(mr—a;)+oy cos(mr—a;), (10)

o sin(m—a;) =0y sin(m—a;) . (11
From Egs. (10) and (11) it follows that

ai=arccos[(0§k —0,21 0%)/20, O ki) - (12)
The equations for a; and a; are obtained by circle per-
mutations of subscripts i — j, j —k, and k —i.

This simple relation together with Egs. (4) and (9) en-
ables us to calculate the inclination angles at given bub-
bles pressures. Only when the bubble pressures are equal
are the inclination angles equal to 120°. The pressure
difference inevitably causes the deviations from this clas-
sical value, which can be predicted when the disjoining
pressure isotherm is known.

If the deviations of surface tension Ao, Aoy, Ao
are small, Eq. (12) can be linearized and the following re-
lation for the deviations in the inclination angles,
8; =a; —120°, holds:

§;= —(20jk—au—oki)/\/30w

Because the overpressure AP; is greater in smaller bub-
bles, positive deviations should be observed for the angles
between the films in the bigger bubbles and negative ones
between the films in the smaller bubbles.

Let considered two typical simple situations: (i) two
large bubbles j and k in contact with a small bubble i
(P; > P;=~P,) and (ii) two small bubbles j and k in contact
with a large bubble i (P; <P;=~P;). In case (i), o
_0”>0' i IJZUIS and 61':_2(A0-11—AUIS)/‘/3UOO

ij =
<0;  §;=8,=—395,. In  case (i), ou=o

<o0,=o0; O'IS and §,=—2(Ao,—Ac,)/V30,>0;
8; ——Sk 18;.

The fact that the angle deviations are positive in large
bubbles and negative in small bubbles was observed in
[12]. The pattern in Fig. 1 confirms this conclusion quali-
tatively.

Referring to the above-mentioned experiments with
black soap films [3,23,24], we can estimate crudely the
deviations in the inclination angles. Actually, in these ex-
periments the differences in surface tensions of black and
thick films, Ao (h) [see Eq. (8)], have been measured. For
example, in black films obtained from the solution of na-
trium dodecylsulfate, Ao, with the increase of the elec-
trolyte (NaCl) concentration from 0.3 to 0.5 mol/l, in-
creases from a negligible value to 1.4 mM/m [23]. Such a
difference in surface tensions leads to contact angles be-
tween black and thick films of up to 10°, which is ob-
served in the experiments with free films [3,23]. If we
suppose that in foams the differences |Ao; —Ao | and
|Ac, — Ao | may be of order 0.3-3 mN/m and o ,, =70
mN/m, we would predict from Eq. (13) that the inclina-
tion angles between the bubbles with black and thick
films increased up to §; = *(0.3-3°). The quantitative es-
timations based on the experimental isotherms of disjoin-
ing pressure II(k) as well as more precise experimental
measurements of the inclination angles in 2D froths will
be presented elsewhere.
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FIG. 1. A pattern of dry 2D foam of a OGME solution. Pos-
itive deviations in the inclination angles in large bubbles and
negative deviations in small bubbles are easily seen.



